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The nonlinear critical layer resulting from the 
spatial or temporal evolution of weakly 

unstable disturbances in shear flows 
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A study is made of the formation of a nonlinear critical layer (first found by Benney & 
Bergeron 1969 and Davis 1969) in homogeneous and weakly stratified incompressible 
shear flows as initially small unstable disturbances develop, whose growth rate is so 
small that all the evolution proceeds in the ‘quasi-steady’ regime. It is shown that such 
an evolution can be described from start to finish analytically using a pair of evolution 
equations for the wave amplitude and phase which involve universal functions of the 
familiar Haberman (1972) parameter, A, that characterizes the relative importance of 
the dissipation and nonlinearity. 

In addition to the function of a ‘logarithmic phase jump’ that was introduced and 
investigated by Haberman (1972), the evolution equations generally also contain other 
functions of 1. In this paper we introduce and study (numerically and analytically) 
another three such functions. 

1. Introduction 
It is common knowledge that the critical layer problem plays the central role 

in shear flow stability and evolution theory at large Reynolds numbers. In the 
linear approximation, it manifests itself in a singularity of stationary non-dissipative 
hydrodynamical equations at a critical level y = y,, where the wave phase velocity c 
equals with the flow velocity u, = u ( y ) :  u(yc) = c. The reason for this is connected 
with the nonphysical character of the neglect of the three factors (dissipation, non- 
stationarityt and nonlinearity) through the entire space, including an arbitrary small 
neighbourhood of y = y,. 

Any one of these factors eliminates the singularity by modifying the equations in 
some neighbourhood of a critical level, ly - y,J < 1 (referred to as the critical layer, 
CL), whose scale 1 in each case is its own, viscous (l , , ) ,  unsteady ( l t )  or nonlinear ( 1 ~ ) :  

I,, = v ” ~ ,  1, = IA(-’dlAl/ds, IN = . (1.1) 

Here v is the inverse Reynolds number, A is the complex disturbance amplitude, and 
s is the evolution variable (time or streamwise coordinate x); all quantities are made 
dimensionless by the half-thickness and the typical scale of velocity u(y )  variation. 
The CL structure is determined mainly by the factor to which the largest of the 

t Non-stationarity here means the evolution of the disturbance amplitude either with time or in 
space (downstream). 
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scales (1.1) corresponds; and the others are responsible for additional details. It is 
therefore appropriate to distinguish the viscous, unsteady and nonlinear CL regimes. 

The solution of the evolution problem of a weakly supercritical ( y  B 1) disturbance 
of small amplitude is therefore constructed as if it were composed of two parts. The 
outer problem involves seeking the solution of a linearized non-dissipative stationary 
problem outside the CL, the so-called neutral mode, 

with small corrections for the dissipation, non-stationarity and nonlinearity. At least 
one of these factors, however, plays the decisive role in the formation of the inner 
part of the solution. The parts of the solution are matched by the method of matched 
asymptotic expansions in the overlap domain between inner and outer regions, i.e. 
when y - y, = 0(1), and an evolution equation of the form 

is obtained as the condition for their compatibility. Here is the fundamental 
harmonic of the vorticity perturbation [ inside the CL (for the time being, we will 
not specify the meaning of the integral f, so that the right-hand side of (1.2) is the 
contribution of the CL. The left-hand side, however, is fully determined by the outer 
solution, and J1 and 52 are some integrals throughout the region outside the CL. 
The integrands in J I  and 52 are quadratic in cp,(y), and at least one of them has a 
singularity (the first-order pole) when y = ye, as a manifestation of the singularity 
of a non-dissipative stationary linear problem. The corresponding integral diverges 
(logarithmically), and its principal value should be taken. 

In the initial stage of development of the disturbance when the amplitude is still 
very small and grows exponentially with a linear growth rate y L ,  

A = A0 exphs )  (1.3) 
the nonlinear scale 1~ is also small (but it does grow!), and the CL will be viscous 
(when y L  < or unsteady (when yL > v1/3 ). A main result of linear theory (see 
e.g. Drazin & Reid 1981) is that in this stage the role of the CL in both (viscous and 
unsteady) regimes reduces to Lin’s indentation rule: the contribution of CL in (1.2) 
is equivalent to the indentation of a singular point y = y, in a complex plane y (from 
below when u’, > 0 or from above when u’, < 0 ); in this case each singular integral 
receives an increment proportional to the ‘logarithmic phase jump’ 

GL = -n: sgn (u:) 

(analogous contributions arise also in the above-mentioned corrections to the neutral 
mode when the ‘right-hand’ (y > yc) and the ‘left-hand‘ (y < y, ) outer solutions are 
matched through the CL; throughout this paper it is assumed that u’, > 0). 

In homogeneous flows with a monotonic velocity profile u(y) the neutral mode 
cp,(y) is regular (analytic) in y = y, ; therefore?, when supercriticality is not too 
small (yL > v), nonlinearity in (1.2) (which is, incidentally, formed wholly in the 
CL) is non-competitive until - in the course of an increase of A according (1.3) 
- the scale lN becomes of the same order as the largest of 1, and l t ,  i.e. until the 
transition to a nonlinear CL regime (see figure 1). A nonlinear CL was discovered 

7 For the relationship between the neutral mode behaviour at y = yc and the nonlinear evolution 
character of the disturbance see Churilov & Shukhman (1992). 
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FIGURE 1. The amplitude-supercriticality diagram for a usual mixing layer. 

by Benney & Bergeron (1969) and Davis (1969). They also found that in the limit 
v/\Al3’’ 0 matching the ‘right-hand‘ outer solution to the ‘left-hand‘ one through 
the CL requires that GL = 0 . Subsequently, Haberman (1972) showed that in a 
steady problem such matching leads to a ‘logarithmic phase jump’ 

that smoothly varies from --x when h -, co (a viscous CL) to zero when i -+ 0 
(a nonlinear CL), and calculated @ , ( A )  by numerical methods. As a result, it was 
concluded that the role of the CL in the nonlinear evolution of unstable disturbances 
reduces to a new ‘indentation rule’ (1.4) of the singular point of the outer solution y = 
y,. On this basis Benney & Maslowe (1975), for example, arrived at the conclusion 
that in the flow u = tanhy (where the principal value of J1 is equal to zero) the 
evolution equation in the limit h e 1  must be of the second order in s (rather than of 
the first order as (1.2)). 

Subsequent investigations demonstrated, however, that the role of the CL in the 
formation of the evolution equation (1.2) and hence the evolution character of unstable 
disturbances is far more complicated and significant. Specifically, it was shown that 
nonlinear problems do not and cannot have any ‘indentation rule’. That gave impetus 
to a new series of publications on the study of the evolution with the transition to 
the nonlinear CL regime. 

The transition itself was studied most extensively and specifically by Goldstein & 
Hultgren ( 1988) who derived for the spatial evolution problem an equation describing 
the dynamics of vorticity inside the CL and solved it simultaneously with (1.2) nu- 
merically at different values of the parameter D = v/y;.  Their calculations showed that 
far from the boundary of the nonlinear CL region on the amplitude-supercriticality 
diagram (figure 1) the amplitude always behaves qualitatively as follows from the 
‘phase jump’ concept, i.e. it grows exponentially at a small amplitude, and varies as 
(Huerre & Scott 1980) 

A N (yps)2’3 (1.5) 
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at a large amplitude. However, a wide variety of transitions ranging from a monotonic 
transition when 0+1 to a strongly oscillating one when ~ < l ,  are observed between 
these two asymptotic representations. The reason for this is readily understood from 
simple physical considerations. 

The disturbance alters the flow topology: instead of straight streamlines parallel 
to the x-axis, there appears a cat’s-eye configuration, with fluid particles trapped 
inside. The distribution of vorticity [ inside the CL is now determined by three 
processes: (i) a growth in amplitude accompanied by the capture of an increasingly 
growing number of particles (the typical time? z, = y’), (ii) the diffusion of [ (the 
typical time zd = L2/v,  L being the scale of variation of <), and (iii) the motion and 
mixing of particles inside the cat’s eye (the typical time z, = A-1/2). In the process of 
evolution the relationships between z,, zd and z, can change drastically, which adds 
great complexity to the picture of development of the disturbance. 

In the initial (linear) stage L coincides with the CL scale 1 and T,+ max(z,, zd), 

i.e. trapped particles are practically at rest, and the vorticity distribution inside the 
CL hardly differs from the undisturbed one. The transition to a nonlinear CL 
regime starts when the amplitude has increased to the extent that z, becomes of the 
order of min(zd,z,) and a vorticity redistribution inside the cat’s eyes will set in as a 
consequence of the motion of fluid particles. 

When the transition begins from the unsteady CL regime (041) the viscosity is 
small, and the vorticity ( is frozen-in to the flow and is transported by fluid particles. 
Therefore, in about every half-rotation of trapped particles there is a change of sign 
of the vorticity inside the cat’s eyes, and along with it the sign of the right-hand side 
of (1.2) - the amplitude begins to oscillate with a period of order z,. Ultimately, 
because of the non-isochronicity of neighbouring orbits fluid particles initially nearby 
will move away from each other and a mixing of trapped particles will occur. In 
view of the fact that each fluid particle carries its own value of the vorticity, the 
distribution of ( will become fine-scaled as the result of this mixing. With the scale 
of refinement L - o’/*lN, the diffusion time Td will become equal to z,, the viscosity 
will smooth out the distribution of (, and inside the cat’s eyes there will appear a 
plateau on the [-profile, slightly sloping in the same direction as outside the cat’s 
eyes. As a result, the growth rate of amplitude A decreases sharply, the viscosity 
ensures a smooth distribution of [ inside the CL and its fast adjustment to the local 
instataneous value of A, and the evolution law (1.5) is established. 

When the transition begins from the viscous CL regime (o+ 1) the evolution of ( is 
quasi-steady from the outset: the viscosity is sufficient to ensure a smooth distribution 
of ( and its adjustment to A. This greatly simplifies the problem because ( can be 
calculated independently if A is assumed to be given, and the evolution equation (1.2) 
can be obtained in a closed form suitable for a description of the development of a 
disturbance in all stages, from (1.3) to (1.5). 

This paper is concerned with the study of such a ‘quasi-steady’ evolution of unstable 
disturbances in shear flows of homogeneous and weakly stratified fluid and primarily 
with the derivation of appropriate evolution equations. These equations are the same 
in form with those obtained by means of the ‘indentation rule’. But if they are treated 
from such a point of view, it turns out that the ‘rules’ are different not only for 
different problems and not only for the integrals J1 and 52 of the same problem, 
but even for the real and imaginary parts of the same integral. In addition to the 
Haberman function @l(A), we introduce and calculate three further functions: @2(A), 

t To be more precise, the typical scale on the scale of the evolution variable s. 
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which is the second hypostasis of Gl(L)  because they co-exist in all non-degenerate 
problems; @,(A) related to an interesting stabilization phenomenon of the instability 
due to a finiteness of the instability region width on the disturbed vorticity profile; 
and Q4(A,Pr) that represents the influence of a weak stratification (Pr  being the 
Prandtl number). 

Resulting equations can be solved by quadratures and this makes possible an 
analytic study of the development of unstable disturbances at all evolution stages 
from (1.3) to a saturation (if any) or to the final stage of the form (1.5). In addition 
to being of independent interest, such solutions are of value as tests for numerical 
schemes designed for solving more complicated unsteady problems occurring in the 
case of a large supercriticality. 

The subsequent presentation is organized as follows. Section 2 gives an outline of 
the derivation of equations both for the temporal and spatial evolution of shear flows 
of homogeneous incompressible fluid which takes into account (for completeness 
of our treatment) the p-effect. We use the results to consider temporal evolution 
problems for disturbances in a weakly supercritical flow on the /?-plane and temporal 
and spatial evolution problems for weakly supercritical disturbances in a usual mixing 
layer. In this connection we introduce and calculate the function @z(A). 

Section 3 considers the stabilization of disturbances in a weakly supercritical flow 
on the P-plane in the nonlinear CL regime due to a finite width of the instability 
region on the generalized vorticity profile, and the function @,(i) is also introduced 
and studied, which is related to a description of this process. 

In $4 we obtain evolution equations for a slightly stratified flow and study the 
function @4(L,Pr) which appears in them. All regimes and stages of evolution are 
considered in detail. 

Section 5 discusses results obtained and their implications. 
In Appendix A we calculate asymptotic representations of the previously introduced 

functions in the limit of a nonlinear CL ( 2 ~ 1 )  with a detailed treatment of a narrow 
region of width 0(2’/2) near the cat’s-eye boundary, as done by Brown & Stewartson 
(1978) for @I(L). In Appendix B we describe a numerical computation algorithm for 
the @,. 

2. Quasi-steady evolution of disturbances in a homogeneous shear flow 
(the functions @1(;1) and @2(13.)) 

Consider a homogeneous shear flow with a monotonically increasing velocity profile, 
u’(y) > 0. It is known that the phase velocity co = wo/ko of a neutral mode (with 
frequency wo and wavenumber ko)  is such that at a critical level y = y, a generalized 
vorticity has an extremum. This means 

u’/(y,) = 0 (2.1) 

(2.2) 

for a usual mixing layer, and 

for a zonal flow on the p-plane. 
u”(yc) - p = 0 

Let a perturbation of the stream function be represented as 

dV = (AeM--rt) + C.C.) cp,(y) + . . . (2.3) 

where cp,(y) is an eigenfunction of the neutral mode (real, in view of the equality (2.1) 
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or (2.2) and normalized by the condition q a ( y c )  = 1). Dots denote terms of higher 
order of smallness. 

A weakly unstable disturbance is differentiated from the neutral mode by its 
parameters (k  # ko and/or co # W O ) ,  and its amplitude A evolves slowly with time or 
in space - accordingly, the temporal or spatial evolution is said to occur. 

In temporal-evolution problems for flows with a spectrum of unstable disturbances 
wide in k the desired weakly supercritical mode is specified by the choice k = ko + Ak 
(Ak < O)?; however, in the case of a weakly supercritical flow with a narrow spectrum 
of unstable modes where the controlling parameter is slightly less than its critical 
value, it is natural to study the mode ko = k,,, i.e. the most unstable mode. In 
particular, in the case when the p-effect is taken into account, the neutral curve on 
the (k ,  P)-plane has a maximum 

(2.4) 

(2.5) 
The spatial-evolution problem is usually posed in flows with a spectrum of unstable 

modes wide in W, and the desired mode is separated through excitation at the 
frequency o = 00 + d o  ( A o  < 0)  and develops streamwise (for a detailed justification 
to such a setting out of the problem see Goldstein & Hultgren 1988). We will consider 
examples covering all of the cases described above. 

The technique for deriving evolution equations is well known; therefore, we will 
only introduce the notation and scaling. We introduce the parameter & a 1  that 
characterizes the disturbance amplitude, and put 

Pmax  = Bcr  = max u”(Y) 

u; = u”’(yc) = 0 . 
at k = k,, and, according to (2.2), the CL is the vicinity of a point where 

A = m<, 7) exp[W<, 711, (2.6) 

v = 118312 . (2.7) 

z = p & W ,  < = pEl/=X, (2.8) 

Ak = p&’I2K, AW = p ~ ” ~ s 2 ,  A/3 = p - pCr = p ~ ‘ ’ ~ p 1 ,  < 0. (2.9) 

Here 

which corresponds to the following scaling of the quantities Ak, A o  and A p :  

The amplitude EB and the phase 0 of the wave depend on the slow (evolution) 
variables z and 5 .  The quantities K ,  s2 and p1 are of the order of unity. In general 
q and p are also of the order of unity, which means that we are working in the 
vicinity of a ‘triple point’ y~ = v1/3, A = v2I3 (see figure 1) where the three possible 
CL regimes are concurrent. However, by varying q and p, it is possible to extend 
significantly the ‘working zone’ boundaries both in y L  and in A and cover, in the 
framework of the same equations, all possible types of evolution with the transition 
to a nonlinear CL regime. As pointed out in the Introduction (and is evident from 
figure l), such a transition from the viscous CL regime ( y L  < v1I3) occurs when 
A - v2 /3+y i  , which corresponds to q = 0(1) and p41  and implies, as will be shown 
below, the quasi-steady development of vorticity [ inside the CL. On the other hand, 
the transition from the unsteady CL regime proceeds when A $$ v1l3 ,  

t It is clear that such a setting out of the problem is somewhat artificial: there exist more 
unstable modes and their development will disturb the picture obtained; we consider this case only 
as an instructive aid. 
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which requires q 4 1  and p = 1; the evolution of i in this case will be unsteady, as 
described in Introduction. 

By representing the stream function y inside the CL as 

lp = &”2cY + (&Y“) + &3’2Y(3/2) + E2Y(*) + . . .), Y = ( y  - Y,)/&’/2, 

we obtain, as a result of matching to 0 ( c 2 )  of the inner and outer solutions: 

dB 
II ( g + c $ )  B-2kiI2- at = k o  (2.1 1) 

(2.12) 
ao 

BI1 (i + c$) 0 - 2kiBI2- + PlkoBZ at 
where 

8 = ko(x - ct) + O(<,T),  (2.13) 

(2.14) 

Equations (2.11) and (2.12) are nothing more nor less than equation (1.2), divided 
into the real and imaginary parts and slightly transformed, while (2.10) describes the 
vorticity dynamics inside the CL. It is convenient to formulate relevant boundary 
conditions when Y .+ +co as 

(2.15) a i  
ay 
- - 0 .  

In (2.11) and (2.12) 

1 2rr 
co Z 

f dY(..  .) = lililz dY(. . .), (. . .) = - 1 do(. . .), 
--a, 2n 0 

where fdy(  ...) stands for the half the sum of corresponding integrals taken with 
indentation of the singular point from above and below. 

As pointed out in the above discussion, for transitions of interest here, from the 
viscous CL regime we have p41, and the first (evolution) term in (2.10) is small, and 
this implies a quasi-steady adjustment of i to the local instantaneous amplitude B 
throughout the duration of the disturbance evolution in accordance with the equation 
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/dY (( sin 0) and f d Y  (( cos 19): (2.18) 

appearing on the right-hand sides of (2.1 1) and (2.12), we introduce auxiliary functions 
gl(A; z, 0) and g2(A; z, 0), such that 

(2;)' ( - ~ ~ + z ~ + s i n 0 -  a2 a gl =-2 
aZ 

and using them we define two functions of 1: 

@1(A) = fmdz(g1 sine), @2(A)  = 

f>z(gl cos 0 )  = 

--m 

Note that the symmetry properties of (2.19) yield 

(2.19) 

(2.20) 

The plots of @,(A) and G2(1) are shown in figure 2. Thin lines correspond to their 
asymptotic expansions at small and large 1 : 

C")A + 0(1)A3/2  + 0(12), 14 1 

--n + u ~ A - ~ / ~  + 0(r8I3), A+ 1 
(2.21) @ 1 ( 4  = 

c(2)A-1 + O( l), A G l  

--7t + u ~ A - ~ / ~  + ~ ( r * / ~ ) ,  A+ 1 
(2.22) @,(A) = 

Here 

(2.23) 

The function @,(A) was introduced by Haberman (1972), and he also calculated its 
asymptotic representations? and presented, based on numerial calculations, its plot. 
The function @2(A)  was introduced by Shukhman (1989) and he also calculated its 
asymptotic representations (2.22)$1. A numerical calculation of @2 throughout the 
range of variation of A is done for the first time here. 

The integrals of (2.18) are readily evaluated in terms of @1 and @2; as a result, 
from (2.11) and (2.12) we obtain a pair of evolution equations for the amplitude and 
phase of the wave: 

C(')  = -5.5151 .. ., D(') = 4.2876 ... , a1 = 1.6057 ..., 

C(') = -2.5008.. . , a2 = -al. 

t The term D(')13/2 in (2.21) seems to be given for the first time, although all pertinent calculations 

$ An asymptotic representation of CP, as A 4  1 was also obtained by Goldstein & Hultgren (1988) 
were reported by Brown & Stewartson (1978). 

but with the incorrect value of d2) = -2.7214.. . 
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FIGURE 2. The functions Gi(i) and G2(1). Thin lines show their asymptotic expansions 
(2.21) and (2.22). 

(2.26) 

It is interesting to look at the equations obtained from the point of view of the 
‘indentation rule’. The left-hand sides of (2.24) and (2.25) involve ‘finite parts’ of 
two singular (logarithmically divergent) integrals I ,  and I 3  which at y = y ,  have the 
residues 

respectively. Taking into consideration that the complex amplitude A = EB exp(iO), 
one can to attribute to the integral I 3  with the indentation of the point y = y, the 
‘logarithmic phase jump’ @,(A); however, two different ‘jumps’, @,(A) and @2(A),  have 
to be simultaneously attributed to the integral I!, and one of them (@) tends to 
infinity in the limit of a fully developed nonlinear CL (A --f O)! 

In what follows we will consider several examples in which the evolution equations 
contain the functions @,(i) and @2(A) in different combinations. 

2.1. Weakly supercritical zonal pow u = tanh y on the fi-plane; temporal evolution 
In this problem the spectrum of unstable modes is narrow, and one should put 
ko = k,, and, accordingly, aB/d< = i?@/a[ = 0, while the supercriticality is due to 
AD. Parameters, the eigenfunction qa of the neutral mode and the integrals II and 1 3  
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c = -(1/3)1/2, ko = (1 - c ~ ) ~ / ~  = (2/3)'/2, 

per = U: = -241 - c2) = 4/33/2, U: = 2/3, U: = 0, U! = -16/33/2, 

1 - c  
(2.27) 

4nc2 
1 1  = ~ 

sin(nc) 
As a result, from (2.24) and (2.25) we obtain 

Here 

(2.28) 

(2.29) 

(2.30) 

is the growth rate of linear theory, and 

c l = p l - = - -  l3 p1 [ 1- (+=)ccos(nc)] 
11 4c2 

is a correction to the phase velocity of the wave. 
The frequency shift, defined by (2.29), is due to the supercriticality and does not 

depend on the amplitude. This means that the CL position remains unchanged as the 
amplitude grows. Equation (2.28) is readily integrable by quadratures and provides a 
means for following the entire evolution process, starting from a linear stage (291) 
and ending with the evolution in the nonlinear CL regime (241) when a reduction in 
growth rate y.  -+ y d  leads to a power-law evolution: 

B K ( ~ y . 2 ) ~ ~ ~  . (2.31) 

2.2. Mixing layer u = tanhy; temporal evolution 
In this problem there is a wide spectrum of unstable modes and the supercriticality 
is due to Ak. In (2.24), (2.25) we put 

c = 0, ko = 1, U: = 1, u," = 0, U: = -2, c ~ , ( J I )  = l/cosh(y), 11 = 0, 1 2  = 2, 

We obtain, respectively, 
dO 
--@I = 0, 
dz 

4KB = 2-@2, 
dB 
dz 

whence it follows that the phase velocity of the wave, as in the preceding case, is not 
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influenced by nonlinearity, and the amplitude obeys the equation 

(2.32) 

where 
2K 

=--K 
is a linear growth rate. The comparison of (2.32) with (2.28) reveals that their 
solutions behave in qualitatively the same manner because, as can be seen from the 
asymptotic expansions (2.21) and (2.22) and from figure 2, the functions @p,(A) and 
x2/Q2(A) have similar behaviour. Nevertheless, these are different functions as they 
have quite a different origin. 

This problem was solved by Huerre & Scott (1980) who obtained an equation of 
the form (2.32) but with 

The problems considered above are in a sense degenerate. In the first example 
the condition u: = 0 leads to the fact that the evolution equation (2.28) contains 
a ‘sine’ function @,(A) alone, while in the second example, because of the flow 
antisymmetry, II = 0 and (2.32) involves only a ‘cosine’ function @ 2 ( A )  . Consider 
next the non-degenerate case. 

instead of @ 2 t .  

2.3. Mixing layer with an arbitrary velocity proJile; temporal evolution 
In this problem PI = 0, u: = 0, M / a <  = K ,  d B / d <  = 0. From (2.24) and (2.25), 
with a little manipulation, we get 

(2.33) 

(2.34) 

Here, unlike the cases considered above, the correction to the frequency is 
amplitude-dependent; hence, as the evolution proceeds, there is a change in the 
phase velocity of the wave and in the position of a critical level y,  = y,(t). From 
(2.14), via (2.21), (2.22) and (2.341, we obtain the total displacement of the critical 
level in the course of the evolution: 

The amplitude growth, described by (2.33), does not differ qualitatively from 
previous cases. Indeed, as is evident from figure 3, the product @1@2 does not change 
too greatly with a change of i from 0 to a. Neglecting this change one may write 
(2.33) approximately in form of (2.28) with a linear growth rate: 

7 A correct result can be obtained if, in addition to a jump of the coefficient of exp(iO), a similar 
jump for exp(-iO) is introduced into equation (3.9) of Huerre & Scott (1980). 
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A 
FIGURE 3. The product (-@jl/n) x (-@2/7c) us. 1. 

2.4. Mixing layer with an arbitrary velocity profile; spatial evolution 
In this problem dB/& = 0, W / d z  = -Q (a < 0) and equations (2.24), (2.25) yield 

(2.36) 

(2.37) 

(2.38) 
The qualitative behaviour of the amplitude and phase is the same as in the preceding 

example. Note that in the case of the spatial evolution the equations contain - with 
any velocity profile - both functions @1 and @*. 

The evolution equations (2.28), (2.32), (2.33) and (2.36) obtained above have the 
form 

H ( 1 )  = 1; + @l(A)@2(A)(ur/u:2)2, 1 0  3 I1 - 2 k o I 2 / ~  2 . 

(2.39) 

where s is an evolution variable (z or 0, and R(1) is a reducing factor which is 
expressed differently in each case in terms of the functions & ( A )  and @2(A). At the 
transition to a nonlinear CL regime the growth rate is reduced, the rate at which 
the amplitude increases drops abruptly, and the evolution becomes of power-law 
type (1.5) (see also (2.31)). 

At this stage it is sufficient to have a small additional effect to stop a growth of 
B and even cause the wave to be damped. One main such effect, viscous broadening 
of the flow profile, was considered by Goldstein & Hultgren (1988) and Hultgren 
(1992) (see also Churilov & Shukhman 1994). Broadening leads to a linear (in a first 
approximation) in s decrease of y. in (2.39): 

dB 
ds 
- _  - Y*W)B, 
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and, in a time s - y * / q ,  not only to growth stoppage but also to the dissipation of 
the wave. 

In some cases, however, the flow is produced and sustained by an external force f ,  
and its velocity profile is the result of counterbalancing f by forces of viscous friction: 
f = -  v A 2 y ~  where is a stream function of an unperturbed flow. Such a flow does 
not broaden, and some different, weaker stabilization mechanisms are at work here. 
One of them, which is associated with the smallness of the unstable region width in 
weakly supercrtical flows, was treated by Churilov (1989) and Shukhman (1989) in 
a zonal flow on the b-plane and in a differentially rotating fluid, respectively. New 
terms in the nonlinear evolution equation and a new function @p3(A) are related to 
this mechanism. 

3. Stabilization of a zonal flow on the P-plane (the function @3(1)) 
In a zonal flow, the force f is represented by the pressure gradient. The instability 

is due to the fact that when f i  < fit. = max u”(y) = uy a generalized vorticity has a 
positive derivative, (u: - > 0) in the vicinity of y = y,. The width L of this region is 
determined from the equation (it will be recalled that uy  = 0 and, obviously, uy < 0): 

~ ” ( y )  - f i  = U: - p + Lu”(  2 c y  - Y , ) ~  = -AP + i ~ : r ( y  - yc) = 0 2 

and is 

The instability will be stabilized when this region is totally embedded in a nonlinear 
CL (of width l N  = and because of mixing of its constituent liquid particles 
u: - f l  NN 0 will be established. This will occur when the amplitude 

A = O ( Y L )  (3.1) 

in a time (see (2.31)) t - Y ; ’ ~ / v .  

evolution equation (2.28) thus: 
As shown by Churilov (1989), taking this mechanism into account modifies the 

Here 

and the function g 3 ( A ;  z, 0)  is the solution of the equation 

a2 a ( a z 2  ao -2- + z- +sin 

with the boundary conditions 

- + 0  d g 3  as Z + + G C .  

az 

(3 .3)  

(3.4) 

(3.5) 

The function @3(A) is shown in figure 4. In the limits A+ 1 and A+ 1 it was calculated 
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FIGURE 4. The function @(A) and its asymptotic expansions (3.6) (thin lines). 

analytically by Churilov (1989) and Shukhman (1989) (without the term D(3)13/2)) 

The right-hand side of (3.2) goes to zero with the saturation amplitude B = BSat, 
defined by the relationship (values of the parameters are given in (2.27)): 

The saturation amplitude B,,, depends on the supercriticality, and from (3.6) and 
(2.21) it follows that when (p1(+q2/3 a saturation sets in the nonlinear CL regime 
(IsatQ1) at the level (cf. (3.1)) 

Thus, here a steady nonlinear CL is realized, unlike the quasi-steady ones considered 
in 92. 

4. Weakly stratified mixing layer, spatial evolution (the function @ 4 ( 4  P r ) )  

also taken into account. We put, as done in $2, 
Consider the mixing layer treated in 4 2.4, but with the weak-stratification influence 

5 = & l I 2 p ,  AW = p~le~’~i2, v = q ~ ~ / ~ ,  

and for the Richardson number at the critical level y = y ,  

Ri = Ri(y,) = ~ E J .  
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Here 52 = 0(1),  J = O(1). It will also be assumed that the Prandtl number 
Pr = O( 1). 

With this scaling, the linear problem properties (neutral mode + dispersion prop- 
erties) are still unchanged, while nonlinear properties are now altered under the 
influence of stratification. Because of a regularity of the neutral mode at y = y,, here 
one may expect the development of a quasi-steady regime of a nonlinear CL and, 
furthermore, a quasi-steady transition to this regime, whereas in flows with Ri  = O( 1) 
the neutral mode is singular, and the disturbance grows explosively, and the nonlinear 
CL regime is not established evolutionarily (Churilov & Shukhman 1988)t. 

Note that scaling (4.1) places reasonably stringent constraints on Ri: Ri = O ( p )  = 
0 (pv2I3), and in the quasi-steady (pG1) evolution regime of interest here this means 

Ri+v213 . (4.2) 
At larger values of the Richardson number the evolution is unsteady and will be 
considered in a separate paper. 

Equations (2.1 1) and (2.12) remain unaltered (in the spatial evolution problem 
d B p z  = 0, aolaz = -52): 

(4.3) 

and the dynamics of vorticity ( inside the CL is now determined largely by the 
interaction with the density (temperature) disturbance P : 

a i  d i  a 2 i  
ae ay  ay2 

kou:Y - + 2koB sine- - y-- 

dP a i  
a Y  a Y  
- + O ,  - - + O  as Y + + m  

(4.5) 

In view of the linearity of (4.6) i is representable as 

i = i h  + i s ,  

i.e. as the sum of the ‘homogeneous’ part { h  that is a well-known solution of (2.17) 
(with PI = 0), and the ‘stratified’ part is that satisfies the equation 

t This is a common property of flows with a singular neutral mode (Churilov & Shukhman 
1992) : in a homogeneous medium the same behaviour is observed for two-dimensional disturbances 
when compressibility is taken into account (Goldstein & Leib 1989; Shukhman 1991) and for 
three-dimensional disturbances in incompressible fluids (Goldstein & Choi 1989; Wu, Lee & 
Cowley 1993; Churilov & Shukhman 1994). 
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Using the results from $2, one may immediately write 

while the ‘stratified’ part of the problem requires separate consideration. 
We now transform equation (4.8) by putting 

- J ap c -[  - _ _  s -  s 
U L a Y  . 

Using (4.5) we obtain the equation 

a f s  afs a2fs P r -  1 a3p 
a8 a~ ay  Pr dY3 

kouLY - + 2koB sin8- - y2 = --qJ---, (4.10) 

from which it is evident that is cc (Pr-1). Since c, and rS make the same contributions 
to the right-hand sides of (4.3) and (4.4), it is clear that the main contribution of the 
stratification to the evolution equation is also proportional to (Pr - 1) and disappears 
when Pr = 1. 

A steady nonlinear CL in terms of equations (4.5) and (4.8) was studied by Kelly 
& Maslowe (1970) and Haberman (1973), but their main results refer, unfortunately, 
to an ‘uninteresting’ case Pr = 1. 

We now introduce an auxiliary function g4(A, Pr; z ,  8) that satisfies the system of 
equations 

(--is a2 + 2% a + 

~ + z - + sin 8- ’ ) gl ( & ; z , H )  = -2sin8 
Pr az2 a8 aZ 

(4.11) 

(4.12) 

with the boundary conditions 

(4.13) ag1 - + O ,  aZ g 4 + 0  as z++_oo 

and the function 

Q4(I, Pr)  = (84 cos 8)dz . (4.14) 

Note that it follows from the symmetry properties of (4.11)-(4.13) that 
s(g4 sin 8)dz = 0. Simple calculations give 

i: 

The function @4 is determined numerically for two values of the Prandtl number 
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FIGURE 5. The function Q4(J., P r )  for Pr = 2 and Pr = 2/3. Thin lines represent asymptotic 
expansion (4.16). 

and is plotted in figure 5. In the nonlinear 261 and viscous A+ 1 limits it is calculated 
analytically (see Appendix A) : 

c ‘ ~ ) ( P ~  - 1)/Pr + O(,i”’InA), 

a 4 ( ~ r ) ( ~ r  - I )R- ’ /~  + o(L-~) ,  

i61 ,  

A+ 1, 
(4.16) @4(II ,  Pr)  = 

where 

2 7 t  113 

= - z 5 / 3  (i) r ( 3) 

F(a,  b ;  c; z )  being a hypergeometric function. 
Upon substituting (4.9) and (4.15) into the right-hand sides of (4.3), (4.4) and 

solving the equations obtained for dB/d< and dO/d<, we arrive at a system of two 
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which give a complete solution by quadratures of the evolution problem for initially 
small weakly supercritical ( y ~  4 v ’ l 3 )  disturbances in a weakly stratified   ria^^/^) flow. 
Consider the various stages and regimes of this evolution qualitatively. 

Since, as has already been pointed out, @ , @ 2  and H change little as i varies from 0 
to co, it is convenient to analyse a simplified form of (4.18): 

- = [a0 + bJq-1/311’3@4(A, Pr)]  B@l(A), (4.20) 
dB 
d t  

where a and b are positive constants of order unity. In particular, the linear growth 
rate is 

y* = naIsz[. 
The function i 1 / 3 @ 4 ( I , P r )  goes to zero when A = 0 and I = GO (see (4.16)) and 

attains an extreme value (of order unity) when I = O(1). Therefore, as might be 
expected, the stratification has a marked influence upon the evolution only in the 
region of reasonably small supercriticality, 

lsz/ < J / q 1 / 3 4 q 1 / 3 ,  (4.21) 

while at a greater supercriticality the disturbance develops in the same fashion as it 
does in a non-stratified flow. The sign of @4 changes when Pr = 1; therefore, one 
should expect a different evolution when Pr < 1 and Pr > 1: the stratification has a 
stabilizing and destabilizing effect, respectively. Let us consider these cases separately. 

4.1. Flows with Pr < 1 (Q4 > 0) 
In such flows all unstable disturbances, whose growth rate satisfies the inequality 
(4.21), are stabilized by the stratification at the level 

Bsat - BN = (Y*V 5/3 / J 1/2 < q2/3,  (4.22) 

i.e. still in the viscous CL regime (BN being the nonlinearity threshold). To calculate 
an accurate value of B,,,, it is necessary to set to zero the expression between square 
brackets in (4.18) (or, equivalently, in (4.20)) and solve the resulting equilibrium 
equation for A. The larger (corresponding to the smaller amplitude B )  of its two 
roots, A1 and 1 2 ,  should be chosen because, firstly, the evolution proceeds from A = 00 
and, secondly, the equilibrium that corresponds to the smaller root is unstable. In 
the limit ( s Z (  4 J / y 1 I 3  the solution can be approximately determined analytically using 
(4.16): 

(4.23) 

With increasing supercriticality, B,,, increases, and A1 and A2 come closer until they 
merge at some s2 = Q* = 0 ( J / q ’ / ’ )  (and B,,, = (Bsat), = 0 (17’1~)). With a larger 
supercriticality, the equilibrium equation has no roots, i.e. stratification cannot stop a 
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Y L  

FIGURE 6. The amplitude-supercriticality diagram for a slightly stratified flow when Ri<v213, Pv > 1. 
(i) A - (yLv513/Ri)"2; (ii) A - (Ri/ljL)'; the arrows indicate the different evolutionary stages. 

growth of disturbances, and as B = 0 (q2 i3 )  they pass into the nonlinear CL regime, 
thereby causing the exponential growth to become power-law growth. 

4.2. Flows with Pr > 1 (@4 < 0) 
Stratification destabilizes disturbances in its region of influence (4.21), i.e. it accelerates 
their growth which continues indefinitely, initially in the viscous CL regime and then 
in the nonlinear CL regime, and can be broken down into four stages (see figure 6). 

4.2.1. Viscous C L  regime 
In the limit b l  equation (4.18) becomes 

(4.24) 

where 

It is evident that upon reaching the nonlinearity threshold (4.22), the initially 
exponential growth of the amplitude is not stopped but, on the contrary, is accelerated 
and becomes explosive : 

B K ( q 5 / 3 / 5 ) ' / 2 ( 5 0  - . (4.25) 
Despite the increasingly speeding-up growth, the unsteady scale 1, - 0 (B2J/q5i3)  < l v  
up to B = 0 (q2 i3)  when the nonlinear scale becomes dominant and the disturbance 
passes into the nonlinear CL regime. 

4.2.2. Nonlinear C L  regime 
In the problem at hand the transition to the nonlinear CL regime, even from the 

explosive growth stage, does not require for its description anything other than the 
evolution equation (4.18) obtained in a quasi-steady approximation, and this distin- 
guishes it radically from similar transitions studied by Churilov & Shukhman (1995). 
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In the limit A41 (4.18) gives 

(4.26) 

where 

Immediately after the transition to the nonlinear CL regime, as long as 

B 4  (i)2, (4.27) 

the decisive role in the evolution is played by a term governed by stratification, and 
the amplitude increases as a power law 

B = a 3 ( J T p y 2 ,  (4.28) 

differing from (1.5) and (2.31). And only when the amplitude has increased to the 
extent that the inequality (4.27) becomes the opposite, will a ‘classical’ power-law 
increase 

B = “4 (y*Y5)2 i3 ,  (4.29) 

be established. 
If the supercriticality y. exceeds .l/~‘/~, stratification is unimportant, and at the 

transition to the nonlinear CL regime an exponential growth of B becomes immedi- 
ately a power-law growth as in (4.29). 

5. Discussion of the results 
The analysis made here shows that in the region of small supercriticality y~ Q v ’ / ~  

the development of unstable disturbances in shear flows of a homogeneous and 
weakly stratified ( R i ~ v ~ / ~ )  incompressible fluid occurs at all stages in the regime of 
quasi-steady evolution of the vorticity i inside the CL. In other words, i adjusts itself 
almost instantaneously to the current value of the amplitude, and transient processes 
do not complicate the evolution pattern. This regime persists even at the stage of 
explosive growth observed in flows with Pr > 1. 

This factor simplifies the problem considerably by reducing it generally to one 
evolution equation integrable by quadratures (the second equation, for the phase 0, 
plays an ancillary role and is also readily integrable). It should be noted, however, 
that the equations obtained and their solutions in no way fit in with the formalism 
of ‘indentation rules’: the role of the CL turns out to be much more important and 
diverse, which manifests itself, in particular, in the diversity of the functions @+(A) 
and significant differences in their behaviour when passing from the viscous (2%- 1) to 
the nonlinear (Ael) CL regime. 

Note also that the functions @(A) (i = 2,3,4) cannot be assigned a pictorial meaning, 
as done by Haberman for his function @ I ,  and it only remains for us to treat them 
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simply as integrals defined by the expressions (2.2), (3.3) and (4.4). Moreover, in 
circumstances where the CL is not a strictly steady-state one, the function @I also 
loses its meaning of logarithmic phase jump. It retains this meaning only in a single 
special case when u:." = 0 (for example, in the case of a weakly supercritical zonal 
flow on P-plane considered in $2.1). 

The range of validity of the evolution equations obtained is significantly more 
extensive than the narrow framework outlined above ( y L  Ri<v213), but outside 
this framework their validity 'suffers a discontinuity'. Physical considerations (see 
the Introduction) and computer simulations show that disturbances starting from 
the region of an unsteady CL ( l + y ~ + v ' / ~ )  also reach the nonlinear CL regime 
and, following some relaxation, their further development proceeds in a quasi-steady 
manner, i.e. it is described by equations (2.24), (2.25) and (4.18), (4.19) with Ael (which 
permits us to confine ourselves only to corresponding asymptotic representations of 
the functions @(A)). On the other hand, at the linear stage of development the 
evolution is also quasi-steady: fluid particles inside the CL have virtually had no 
time to deviate from their unperturbed trajectories (see the Introduction). Thus, some 
'range of unsteadiness' appears in the evolution pattern, which includes the relaxation 
process when passing from the unsteady CL regime to the nonlinear CL regime, 
shown in figure 1 by shading?. The 'discontinuity' in the validity of quasi-stationary 
equations lies in this range. 

It should be emphasized that with further increasing of y ~ .  up to values of O(1) 
we lose not only the possibility of a continuous quasi-steady description of evolution, 
but the possibility of any weakly nonlinear approach to the problem: in this case 
nonlinearity becomes competitive at too high amplitudes, A = 0(1), and weakly 
nonlinear theory is invalid. To overcome this difficulty of principle was not the 
purpose of present work. 

We have carried out a detailed comparison of solutions of equations (2.24), (2.25) (to 
be more specific, of their particular cases, (2.36), (2.37)) with results of a numerical 
calculation reported by Goldstein & Hultgren (1988) in the region of parameters 
2 s q /  ( I O \ C / ~ ) ~  *l. In addition, we have compared the solution of equation (4.18) 
for a weakly stratified flow with the same velocity profile (u = 1 + tanhy) with results 
of our own analogous numerical calculations (is. without using the quasi-steady-state 
approximation). All cases showed a good agreement at all stages of development 
of disturbances. This agreement becomes still better if allowance is made for the 
first correction (0 ( P ' ' ~ ) )  for the unsteady vorticity in the transition (diffusion) layers 
between the CL and the region of the outer solution. The evolution equation in view 
of this correction that generalizes equations (2.24) and (4.18), has the form (we omit 
the derivation) 

t In a weakly stratified flow when Ri+vZ13 the situation is somewhat more complicated, and a 
relevant problem will be considered in separate work. 
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The same kind of correction to the solution (only for the nonlinear CL stage, 
however) was obtained earlier by Goldstein & Hultgren (1988) for unstratified flow. 
They obtained an evolution law of the form 

A = a,(X4)2/3 (1 + al(X4)-’l6) , (At)+ 1, (5.2) 
and for the flow u = c + tanh y constants a, and a1 are 

2a2, r (4/3) ( 
15 r(5/6)  n y  ) , a l = -  1+- . 

It is easy to see that evolution law (5.2) can be reproduced also from (5.1) with J = 0; 
however (5.1) has a larger region of applicability and permits a construction of a 
more exact solution for all stages of evolution, starting from 5 = -00, and not only 
in the developed nonlinear CL regime ( ( ~ 5 )  -+ a). 

Figure 7 presents the results of calculations for a usual mixing layer and its 
stratified analogue. The heavy lines show the solutions of equations (2.36) and (4.18), 
respectively; the dashed lines correspond to the solution of the refined equation (5.1); 
and thin lines refer to the results of a numerical solution of ‘exact’ equations (for a 
usual mixing layer, these curves are marked by the symbol G&H). Designations in 
the figure are the same as in Goldstein & Hultgren (1988) : 

when ( + -00, 
g = ~ ( c / 4 ) ( ~ r / y ) ~ ’ ~ .  

A = eQe, where Q = n/( 1 + n2c2/4). The stratification parameter 
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Appendix A. The limit of the nonlinear CL ( l ~ l ) ,  and matching of 
solutions through the cat’s-eye boundary 

Solutions of the equations treated in the main text 

2 g l ( 1 ;  z ,  0) = -2 sin 8, 

2g3(1;  Z, 0) = 8 sin 28, 
2 g 2 ( ~ ;  z, e) = -2 cos e, 

where 

- + 0  agi as z + + m  
aZ 
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FIGURE 7 Comparison of results of computations made in the ‘quasi-steady approximation’ with 

ones based on the ‘exact’ numerical calculations (see text) 

in the limit 1 are reasonably straightforwardly constructed far from the separatrix 
K = z2/2 + cos 8 = I. There arises, however, a problem of matching the outer ( K  > 1) 
and the inner (1.1 < 1) solutions through the region IC- 1 = O(A1/2) where the viscous 
term can no longer be considered small. Brown & Stewartson (1978) were the first 
to solve such a problem for (Ala). Following their technique we now perform a 
matching for the other equations (Alb-d) also. 

The boundary conditions (A2) determine solutions (Ala-d) with an accuracy of up 
to arbitrary constants. Since the operator 9 is invariant under the transformation 

z-+--z, 8 + 2 n - 8 ,  (A 3 )  
it is convenient to choose these constants such that g4 -+ 0 as z -+ +_a, and gl and g3 
are ‘odd’, i.e. they change sign in the transformation (A3) (g2 and g4, are, obviously, 
‘even’ ). 

It is convenient, instead of gi, to introduce the functions fi : 
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In the variables K ,  0, equations (Ala-d) take the form 
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y l f l @ ; K , 4  =o, 

(A 4b) 
2 4 20 2‘1f2(A;~,0) = -(1- cose) = - sin -, 
Z 2 2  

a a 
ae 9 1  = - -A% ( z g )  , z = 0[2(lc - cos e)11/2, 0 = sgn(z) . 

It is also necessary to know the asymptotic representations of the inner and outer 
solutions of every equation. It is known that in the main order in A 

14 < 1, 

83c2 K 
K >  1, Pr-1 l-- 

f4  = ___ { Q2(74’ 

f~ = const, 1x1 < 1 
Pr 

(for f 4  see also Kelley & Maslowe 1970). Here 
em 

Q(K) = dO[2(~ + cos 8)]’/2, Q ~ ( K )  = 1, decos 6 [ 2 ( ~  + cos O)]”’, 

arccos(-k-), I K (  < 1, 

X, K > l  
or, in terms of the complete elliptic integrals E and K: 

e m =  { 
K >  1, 

2 q 2  = - 
1 + K ’  
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o [f30 - 87~/1’/~s + U(As2 In /s/)] , K > 1, 
f 3 = {  0, J l i l  < 1, 

I f 4 0 ,  / K /  < 1. 

In the variables 0 and s = i-”’(~ - 1) (A4) become 

Following Brown & Stewartson (1978) we construct solutions of (A6a-d) by the 
successive approximation method. Far from the cat’s-eye corners (when sin 8/2%L’/4) 
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and it is convenient to introduce the variable 
8 sin2 to, 
8 cos2 $8, 

which in the corners takes the value 0 and 
transformed into the diffusion operator. 

( a )  Calculation o f f  

S.  M .  Churilov and I. 

z =  { 

Equation (A6a) at the main order becomes 

G. Shukhman 

D > 0, 

D < 0, 

8. In this case the operator 2 2  is 

The function f l  is odd with respect to (A3) and is 2x-periodic in 0, therefore 

f l (S ,O)  =f1(s,8) sgns (A 9) 
and it is conveniently represented in terms of the functions f ( s )  and g(s) such that 

(A 10) 1 f ( s )  = g(s) = 0, when s < 0, 

f 1 (s, 8) = f ( s )  + g(-s); f 1 (s, 0) = f (s) - g(-s) . 
Upon pasing to the Fourier transform, 

F ( s )  = dk Fk exp(iks), 1: 
one can see that 

The functions f k  and gk are analytic in the lower half-plane (Imk < 0) and, in view 
of (AlO), satisfy the equation 

f l k  = f lk(0) exp(-k2z) . 

g-k = -fk tanh(4k2). 

By solving it using the Wiener-Hopf method (for details see Brown & Stewartson 
1978), we get 

B 
g-k = BF+(k), B = const, fk  = -k2F_(k), 

1 tanh(4k2) + G(k) ,  k2 - lnF+(k) - = In 

Since I ( - k )  = -I(k)  and F+(-k) = F-(k), we obtain 

(A 12) 

O0 dk exp(iks) 
f ( s )  = -.I, k2F-(k) ' 

g(s) = B J*dk exp(iks)F+(-k) = B dk exp(iks)F-(k), 
-a3 1: 

where the integration domain is the real axis with indentation of the pole k = 0 in the 
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first integral from below. integrals in (A12) can be evaluated by invoking the residue 
theorem, taking into consideration that in the upper half-plane zeros and poles of 
F - ( k )  coincide with those of k’ tanh(4k2) which are determined by 

4k2 = inn and 4k2 = inm - in/2 

respectively, Residues in the poles of F- will give a series of rapidly decreasing (with 
increasing s) exponents ; therefore 

(A 13) g(s) = o (exp [-qx 1 1/2 s ] ) ,  s -+ +a. 

in f ( s )  the main contribution is made by the residue at the point k = 0. We get 

where [ ( z )  is the Riemann zeta function. 
Matching to (A5a) gives 

B = ~ c A ” ~ ,  2 f l o  = -2(7~A)’/~ (Jz - 1) [ (4) m 2.1438A1/2; (A 15) 

thus, the function f l ,  as shown for the first time by Brown & Stewartson (1978), 
undergoes on the cat’s-eye boundary a ‘jump’ of 0 which determines the 
expansion term (following the main term) of Q1 when 241: 

@‘(A) = C(’) i  + D(1)A3/2 + . . . , D(’) = -47~’’~ (& - 1) < (i) = 4.2876.. . (A 16) 

(b )  Calculation of f 3  

It follows from (A%) that f3 > 0 (,?‘I2), hence not only is f 3  odd with respect to 
(A3) but it also satisfies, in a first approximation, the same equation (A8) far from 
the cat’s-eye corners. Therefore, f 3  differs from fl only by the choice of the constant 
B in (All)-(A14). In particular, as s -+ +a 

and matching to (ASc) gives 

B3 = - 8 ~ r R ’ / ~ ,  f 3 0  = 32(7~R)’/~ (a - 1) [ (i) m -34.3006A’/2. 

The function f 3  also undergoes a ‘jump’ 0 ( A l l 2 )  on the cat’s-eye boundary, and 

@(I.) = C‘3)1 + 0(3),13’2 + . . . , D(3) = 6 4 ~ ~ ” ~  2 - 1 [ (k) = -68.6012.. . (A 17) (J 1 
( c )  Calculation of f i  

In accordance with (ASb), we seek the solution in the form of an expansion 

The equation for f4-l) is homogeneous and coincides, far from the cat’s-eye corners, 
with (A8), but - unlike f l  - the function f 2  is even with respect to (A3), and 

f2b, 0) = f 2 ( &  8) 
at all s. In Fourier transform, we obtain the equation 

f i i ” [ l  - exp(-8k2)] = 0, i.e. fii” = a6(k) + ibb‘(k), 
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where 6 and 6' are, respectively, the Dirac delta-function and its derivative. Upon 
inverse Fourier transforming, we obtain the equation 

fi-') = a + bs . 
Matching to (A5b) gives 

It must be emphasized that the constant is an exact solution of the equation 2'2F = 0, 
and taking into account the cat's-eye corners does not make any additional contribu- 
tions to the following orders of the perturbation theory. 

The iteration f$-1'2) also satisfies (A8) far from the corners, and in view of (A5b) 
we obtain 

Thus, to an accuracy of 0 
boundary. 

f2e = f i i  = a, b = 0. 

fi-1/2) = -2s/3 . 
the function f 2  is continuous on the cat's-eye 

(d) Calculation of f 4  

It follows from (Al l )  and (A15) that in the region considered (the vicinity of the 
separatrix K = 1) f l  = 0 ; therefore, put f l  = L1/2h. The function h is a simple 
modification of f l  : it is necessary merely to everywhere change k for k/Pr'/2 and put 
B = a/(2Pr). 

Far from the cat's-eye corners, equation (A64 becomes 

or, in Fourier-transform, 

k3[Z(8 - 2)]1/2hk(Z), hk(7) = hk(0)eXp 
i5&-1 

__ = -k2f4k - -- df 4k 

dz 2 Pr 

Its solution is 

f4k(e) = f4@) exp(-k2z) - 2 

dt[t(8 - t ) ] ' /2  exp 

The function f 4  is even with respect to (A3); hence 

f4(S, 0)  = f4(S, 8) and f4k(o)  = f4k(8), 

which in view of (A18) leads to the equation 

P r -  1 
Pr 

(1 - exp(-8k2)) f4k(0) = --4nik3ahk(8)- @ (i,3;Sk2(1 - P r ) / P r ) ,  

Upon substituting in (Al l )  k for k/Pr'/2 and putting B = a/(2Pr), from 
where @(a, c ;  z )  is a Kummer's confluent hypergeomertric function. 

obtain 
4ink@ (i,3;8k2(1 - - P r ) / P r )  

[ 1 - exp( -8k2)] [ 1 + exp( 8k2/Pr)] F- (k/Pr'/') 
+ a16(k) 4 

P r -  1 
f4k(o) = 7 

(A 19) 

A19) we 

ibl6'(k), 
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and after an inverse Fourier transform 

P r - 1  kexp(iks)@ (i,3;8k2(1 - Pr)/Pr)  
f4(s70) = 4in- 

Pr L:k [1 - exp(-8k2)] [1 + exp(8k2/Pr)] F- (k /Pr’ /2)  

+ a1 f b i s ,  

where integration, as in (A13), proceeds along the real axis with indentation of the 
pole k = 0 from below. When 1st -+ co we obtain 

Matching to (A5d) gives 

f40 = al = - p r - l ( l + g ) ,  b l = O .  
Pr 

Thus, f4 undergoes on the cat’s-eye boundary an O( 1) ‘jump’ caused by a jump of the 
derivative of the function fl .  This relation is revealed in the most clear way by using 
a generalized Prandtl-Batchelor theorem (see, for example, Goldstein & Hultgren 
1988; Churilov & Shukhman 1995). In order to obtain it, we introduce a function 
G(z,O) such that 

aG 
- =zf4, 
BZ 

rewrite (A44 in z and 0 variables and integrate it once over z :  

1 a G  
Since f4  = --, we obtain z a2 

Integrating over any closed contour K = const (when K > 1 the contour is closed by 
segments f3 = 0 and f3 = 2n, see Churilov & Shukhman 1995), we obtain 

Since f 4  is even and gl is odd with respect to (A3), the integrand is odd, and the 
integral over the upper arc of the contour equals the integral over the lower arc, i.e. 

~ ~ + ~ m  [ ;: Pr - 1 a2 
dd -+-- Pr az2 gi ( ; ; z 7 e ) ]  = 0 

n-0, 

at any K and I .  In the limit 2 -+ 0 we choose K~ = 1 - E ,  K~ = 1 +e where E = 0 
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and integrate this equality over K from K I  to ~ 2 .  The jump of f4  on the cat’s-eye 
boundary is 

P r -  1 dgl 
Lf4]Q(1) = - 4 ~ 0 -  [=] + 0 ( A l l 2 )  . Pr 

Since, according to (A5a) [dgl ld~]  = 4m/Q(1) + 0 (All2)  and Q(l) = 8, hence 

in complete accordance with (A20). 

Appendix B. Algorithm for numerical solution of equations for gl, . . . , g4 
and calculation of the functions @l(A), . . . , ~$41, Pr)  

We now expand gi in terms of harmonics: 

n=-cc 

For i = 1,2,3 we obtain: 

Boundary conditions are formulated by specifying asymptotic expansions as z -+ +_a: 
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(3) - 1 16iA 2 2 i i  cfl 212-3 

2(n + 1) 
c,; c, = -2, 

(B 11) 

f(3)  = _ _  + -, fp’ = ~7 +-3 Cfl+I = -~ f l  - - -+- 
Z3 26 ’ 2 z 2 4  

The region of numerical calculation is the interval [-z,, zm], outside which contri- 
butions to integrals of our interest are calculated using (B9)-(B12). We obtain 

@+(A) = / i d z  Im (fi’)) + 7, 41 
-2, 32, 

Solutions of stationary equations (B2), (B3), (B6), (B7) were determined by the method 
of establishment, i.e. instead of them we solved unsteady equations for the functions 
f $ ) (A; z , t ) :  

and in much the same way for fp) .  
Let the ‘amplitude’ A be a specified function of time t which is adiabatically turned 

on when t = 0 and smoothly goes to unity when t = T .  As a certain time 7’ ( T  6 1Oz) 
elapses, the required stationary solutions are established. To represent A(t), we take 
the function 

A( t )  = f. [ 1 - (1 - 
T 

and choose T = A-’ when A < 1 and T = 1 when A > 1. When t = 0 (i.e. when A = 0) 
the initial functions f!) were specified as solutions of corresponding linear equations: 
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00 

F ( z )  = i .I dt exp(-$t3 - itz), (B 24) 

(B 25) dv v3 exp { - - i t3  [Pr - (Pr - l ) u 3 ]  } . 

The boundary conditions (B9)-(B12) that are specified at z = +z, must also be 
redefined for A # 1: 

(the boundary condition (B12) for f4 )  retains its form, except for the re-defining of 
a, (see (B26)). 

The system of partial diferential equations was solved by a predictor-corrector 
method similar to that decribed by Goldstein & Hultgren (1988). 

REFERENCES 
BENNEY, D. J. & BERGERON, R. F. 1969 A new class of nonlinear waves in parallel flows. Stud. Appl. 

Maths 48, 181-204. 
BENNEY, D. J. & MASLOWE, S. A. 1975 The evolution in space and time of nonlinear waves in 

parallel shear flows. Stud. Appl. Maths 54, 181-205. 
BROWN, S. N. & STEWARTSON, K. 1978 The evolution of the critical layer of a Rossby wave. Part 11. 

Geophys. Astrophys. Fluid Dyn. 10, 1-24. 
CHURILOV, S. M. 1989 The nonlinear stabilization of a zonal shear flow instability. Geophys. 

Astrophys. Fluid Dyn. 46, 159-175. 
CHURILOV, S. M. & SHUKHMAN, I. G. 1987 The nonlinear development of disturbances in a zonal 

shear flow. Geophys. Astrophys. Fluid Dyn. 38, 145-175. 
CHURILQV, S. M. & SHUKHMAN, I. G. 1988 Nonlinear stability of a stratified shear flow in the regime 

with an unsteady critical layer. J.  Fluid Mech. 194, 187-216. 
CHURILOV, S. M. & SHUKHMAN, I. G. 1992 Critical layer and nonlinear evolution of disturbances 

in weakly supercritical shear layer. XVZIZth Intl Congress of Theor. and Appl. Mech., Hai$a, 
Israel. Abstracts, pp. 39-40; Preprint of Inst. Solar-Terrestrial Physics 4-93, Irkutsk. Also: 
Izv. RAN Fiz. Atmos. i Oceana 1995, 31 (4) 557-569 (in Russian). 

CHURILOV, S. M. & SHUKHMAN, I. G. 1994 Nonlinear spatial evolution of helical disturbances to an 
axial jet. J. Fluid. Mech. 281, 371402. 

CHURILOV, S. M. & SHUKHMAN, I. G. 1995 Three-dimensional disturbances to a mixing layer in the 
nonlinear critical-layer regime. J .  Fluid Mech. 291, 57-81. 

DAVIS, R. E. 1969 On the high Reynolds number flow over a wavy boundary. J .  Fluid Mech. 36, 

DRAZIN, P. G. & REID, W. H. 1981 Hydrodynamic Stability. Cambridge University Press. 
GOLDSTEIN, M. E. & CHOI, S.-W. 1989 Nonlinear evolution of interacting oblique waves on two- 

GOLDSTEIN, M. E. & HULTGREN, L. S. 1988 Nonlinear spatial evolution of an externally excited 

337-346. 

dimensional shear layers. J .  Fluid Mech. 207, 97-120. 

instability wave in a free shear layer. J .  Fluid Mech. 197, 295-330. 



Nonlinear critical layer as a result of evolution of disturbances 22 1 

GOLDSTEIN, M. E. & LEIB, S. J. 1989 Nonlinear evolution of oblique waves on compressible shear 

HABERMAN, R. 1972 Critical layers in parallel flows. Stud. Appl. Maths 51, 139-161. 
HABERMAN, R. 1973 Wave-induced distortion of slightly stratified shear flow: a nonlinear critical- 

layer effect. J .  Fluid Mech. 58, 127-735. 
HUERRE, P. & SCOTT, J. F. 1980 Effects of critical layer structure on the nonlinear evolution of 

waves in free shear layers. Proc. R. SOC. Lond. A 371, 509-524. 
HULTGREN, L. S. 1992 Nonlinear spatial equilibration of an externally excited instability wave in a 

free shear layer. J .  Fluid Mech. 236, 635-664. 
KELLY, R. E. & MASLOWE, S. A. 1970 The nonlinear critical layer in a slightly stratified shear flow. 

Stud. Appl .  Maths 49, 301-326. 
SHUKHMAN, I. G. 1989 Nonlinear stability of a weakly supercritical mixing layer in a rotating fluid. 

J .  Fluid Mech. 200, 425-450. 
SHUKHMAN, I. G. 1991 Nonlinear evolution of spiral density waves generated by the instability of 

the shear layer in a rotating compressible fluid. J.  Fluid Mech. 233, 587-612. 
Wu, X., LEE, S. S. & COWLEY, S. J. 1993 On the weakly nonlinear three-dimensional instability of 

shear layers to pairs of oblique waves: the Stokes layer as a paradigm. J .  Fluid Mech. 253, 

layer. J.  Fluid Mech. 207, 73-96. 

681-721. 


